Persistence of topographic controls on the spatial distribution of snow in rugged mountain terrain, Colorado, United States

نویسندگان

  • Tyler A. Erickson
  • Mark W. Williams
  • Adam Winstral
چکیده

[1] We model the spatial distribution of snow depth across a wind-dominated alpine basin using a geostatistical approach with a complex variable mean. Snow depth surveys were conducted at maximum accumulation from 1997 through 2003 in the 2.3 km Green Lakes Valley watershed in Colorado. We model snow depth as a random function that can be decomposed into a deterministic trend and a stochastic residual. Three snow depth trends were considered, differing in how they model the effect of terrain parameters on snow depth. The terrain parameters considered were elevation, slope, potential radiation, an index of wind sheltering, and an index of wind drifting. When nonlinear interactions between the terrain parameters were included and a multiyear data set was analyzed, all five terrain parameters were found to be statistically significant in predicting snow depth, yet only potential radiation and the index of wind sheltering were found to be statistically significant for all individual years. Of the five terrain parameters considered, the index of wind sheltering was found to have the greatest effect on predicted snow depth. The methodology presented in this paper allows for the characterization of the spatial correlation of model residuals for a variable mean model, incorporates the spatial correlation into the optimization of the deterministic trend, and produces smooth estimate maps that may extrapolate above and below measured values.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

[Submitted to Water Resources Research] Persistence of Topographic Controls on the Spatial Distribution of Snow in Rugged Mountain Terrain, Colorado, USA

We model the spatial distribution of snow depth across a wind-dominated alpine basin using a geostatistical approach with a complex variable mean. Snow depth surveys were conducted at maximum accumulation from 1997 through 2003 in the 2.3-km2 Green Lakes Valley (GLV) watershed in Colorado. We model snow depth as a random function that can be decomposed into a deterministic trend and a stochasti...

متن کامل

Simulation and Analysis of the Topographic Effects on Snow-Free Albedo over Rugged Terrain

Topography complicates the modeling and retrieval of land surface albedo due to shadow effects and the redistribution of incident radiation. Neglecting topographic effects may lead to a significant bias when estimating land surface albedo over a single slope. However, for rugged terrain, a comprehensive and systematic investigation of topographic effects on land surface albedo is currently ongo...

متن کامل

Remote Sensing Based Retrieval of Snow Cover Properties Case Study (Shirkooh Mountain Yazd, Iran)

Snow cover area is one of the most important criteria to calculate snow melt runoff. This can have an effect on the biology of the plant and the environment of a region. Using the catchment basin physical characteristic to calculate snow cover area is a conventional method, though its accuracy is not good enough. Most of the useful methods in calculating snow cover area are based on satellite i...

متن کامل

Remote Sensing Based Retrieval of Snow Cover Properties Case Study (Shirkooh Mountain Yazd, Iran)

Snow cover area is one of the most important criteria to calculate snow melt runoff. This can have an effect on the biology of the plant and the environment of a region. Using the catchment basin physical characteristic to calculate snow cover area is a conventional method, though its accuracy is not good enough. Most of the useful methods in calculating snow cover area are based on satellite i...

متن کامل

Topographic controls on snow distribution, soil moisture, and species diversity of herbaceous alpine vegetation, Niwot Ridge, Colorado

[1] The nature of the snowpack has the potential to strongly influence the patterns of alpine plant productivity and composition by governing soil moisture levels, growing season duration and the thermal regime of alpine soils. This study evaluates these relationships by modeling the interrelationships of snow depth, snow water equivalent (SWE), snow disappearance rate, soil moisture, attribute...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005